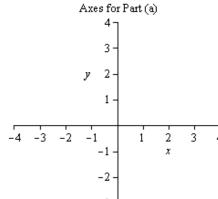
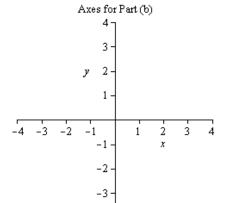
Please show all work on this quiz.

Problem I. Describe (in English) the following graphs in \mathbb{R}^3 : (3 points each, 6 total)

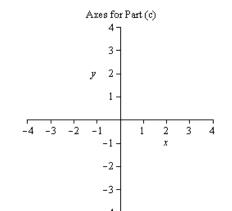

(a) x = 3

(b) $x^2 + y^2 = 25$

<u>Problem II.</u> Given the vectors $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$ and $\mathbf{v} = -3\mathbf{i} + \mathbf{j}$ in \mathbb{R}^2 find each of the following and illustrate on the axes provided: (14 points total)


(a) $\mathbf{u} + \mathbf{v}$

(5 points)


(b) $-\frac{2}{3}$ **v**

(4 points)

(c) $proj_{\mathbf{v}}\mathbf{u}$

(5 points)

<u>Problem III.</u> What is the angle (in degrees) between the vectors **u** and **v** given in Problem II above? (4 points)

Problem IV. Now consider the vectors \mathbf{u} and \mathbf{v} given in Problem II as vectors in \mathbb{R}^3 (i.e. they are both on the xy plane). Please answer the following: (6 points total)
(a) Find the magnitude of $\mathbf{u} \times \mathbf{v}$. (3 points)
(b) In which direction does $\mathbf{u} \times \mathbf{v}$ point? (3 points)
Problem V . Please write "true" or "false," according to which is correct, in the blank provided next to each statement. (2 points each, 10 total)
The dot product is a vector in \mathbb{R}^2 .
The cross product is defined in \mathbb{R}^2 and \mathbb{R}^3 .
The cross product $\mathbf{u} \times \mathbf{v}$ is a vector that is perpendicular to both \mathbf{u} and \mathbf{v} .
$\mathbf{k} \times \mathbf{j} = -\mathbf{i}$
k•j =1