Pledge:

4/21/2010MATH361 Calculus IIIDr. LunsfordTest 2

Name: (100 Points Total)

Please show all work on this test. You may (or may not) find the following formulas useful.

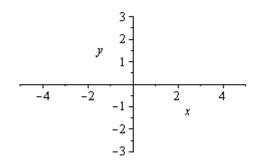
$$\int \sin^2 u \, du = \frac{1}{2} u - \frac{1}{4} \sin(2u) \qquad \int \cos^2 u \, du = \frac{1}{2} u + \frac{1}{4} \sin(2u) \qquad \iint \int dS = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA$$
$$\int f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt \qquad \int \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_C P \, dx + Q \, dy \qquad \bigoplus_C F \cdot dr = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dA$$

<u>Problem I</u>. Find the maximum rate of change of $f(x, y) = \frac{x^2}{y}$ at the point (4, 2) and the direction in which it occurs. Clearly indicate your answers. (8 points)

Problem II. Find the directional derivative of $f(x, y) = \ln(x^2 + y^2)$ at the point (2,1) in the direction of the vector $\mathbf{v} = \langle -1, 2 \rangle$. (8 points)

Problem III. Change the order of integration for the following integral. On the axes provided include a graph of the region R over which the integral is defined. DO NOT EVALUATE the integral. (10 points)

$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \cos(y^2) \, dy \, dx$$



Problem IV. Set up, but DO NOT EVALUATE, an integral to find the surface area of the parametric surface given by the vector function $\mathbf{r}(u, v) = v^2 \mathbf{i} - uv \mathbf{j} + u^2 \mathbf{k}$ for $0 \le u \le 3$ and $-3 \le v \le 3$. (10) points)

<u>Problem V.</u> Change the following integral to polar coordinates: $\iint (x + y) dA$ where *R* is the region below the x-axis and between the graphs of $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. On the axes provided include a graph of the region R over which the integral is defined. DO NOT 4-EVALUATE the integral. (10 points) 3 y 2-1--4 -3 -2 -1--2--3-1 2 3 4

x

<u>Problem VI.</u> Evaluate the line integral $\int y \sin(z) ds$ where *C* is the circular helix given by $x = \cos(t)$, $y = \sin(t)$ and z = t, $0 \le t \le 2\pi$. (10 points) **Problem VII.** Use <u>Green's Theorem</u> to evaluate $\int_{C} x^4 dx + xy dy$ where C is the triangular curve, oriented

counterclockwise, consisting of the line segments from (0,0) to (2,0), from (2,0) to (0,1), and from (0,1) to (0,0). (10 points)

Problem VIII. Let $\mathbf{F} = (3y - 2z)\mathbf{i} + (3x + z)\mathbf{j} + (y - 2x)\mathbf{k}$. Please answer the following questions: (16 points total)

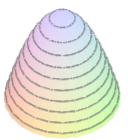
(a) Find f(x, y, z) such that $\mathbf{F} = \nabla f$. (10 points)

(b) Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where C is the line segment from (1,2,3) to (1,4,5). (6 points)

Problem IX. We wish to evaluate the integral $\iiint_B yz \, dV$ where B is the solid region below the

paraboloid $z = 18 - 2x^2 - 2y^2$ and above the xy-plane. To your right you are given a graph of the solid with the lines on the solid drawn parallel to the xy-plane. Please answer the following: (12 points total)

(a) Set up, DO NOT EVALUATE, the integral in rectangular coordinates. (6 points)



(b) Set up, DO NOT EVALUATE, the integral in cylindrical coordinates. (6 points)

<u>Problem X.</u> Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = \langle xy^2, x^2y \rangle$ and *C* is the path, oriented counterclockwise,

consisting of the line segment from (0,0) to (1,0), then along the circular arc $y = \sqrt{1-x^2}$ from (1,0) to (0,1), then along the line segment from (1,0) to (0,0). The graph below may be helpful. Hint: Think conservative! (6 points)

